Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity.

نویسندگان

  • Changmeng Cai
  • Housheng Hansen He
  • Shuai Gao
  • Sen Chen
  • Ziyang Yu
  • Yanfei Gao
  • Shaoyong Chen
  • Mei Wei Chen
  • Jesse Zhang
  • Musaddeque Ahmed
  • Yang Wang
  • Eric Metzger
  • Roland Schüle
  • X Shirley Liu
  • Myles Brown
  • Steven P Balk
چکیده

Lysine-Specific Demethylase 1 (LSD1, KDM1A) functions as a transcriptional corepressor through demethylation of histone 3 lysine 4 (H3K4) but has a coactivator function on some genes through mechanisms that are unclear. We show that LSD1, interacting with CoREST, associates with and coactivates androgen receptor (AR) on a large fraction of androgen-stimulated genes. A subset of these AR/LSD1-associated enhancer sites have histone 3 threonine 6 phosphorylation (H3T6ph), and these sites are further enriched for androgen-stimulated genes. Significantly, despite its coactivator activity, LSD1 still mediates H3K4me2 demethylation at these androgen-stimulated enhancers. FOXA1 is also associated with LSD1 at AR-regulated enhancer sites, and a FOXA1 interaction with LSD1 enhances binding of both proteins at these sites. These findings show that LSD1 functions broadly as a regulator of AR function, that it maintains a transcriptional repression function at AR-regulated enhancers through H3K4 demethylation, and that it has a distinct AR-linked coactivator function mediated by demethylation of other substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover

The androgen receptor (AR) is a key molecule involved in prostate cancer (PC) development and progression. Post-translational modification of the AR by co-regulator proteins can modulate its transcriptional activity. To identify which demethylases might be involved in AR regulation, an siRNA screen was performed to reveal that the demethylase, KDM4B, may be an important co-regulator protein. KD...

متن کامل

The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells

The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional networks in a variety of biological processes such as spermatogenesis, metabolism, stem cell activity, and tumor progression. We matched transcriptomic and ChIP-Seq profiles to decipher a genome-wide regulatory network of epigenetic control by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 ly...

متن کامل

JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer.

Histone methylation is a dynamic process that participates in a diverse array of cellular processes and has been found to associate with cancer. Recently, several histone demethylases have been identified that catalyze the removal of methylation from histone H3 lysine residues. Through bioinformatic and biochemical analysis, we identified JARID1B as a H3K4 demethylase. Overexpression of JARID1B...

متن کامل

Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1.

Androgen receptor (AR) is reactivated in castration-resistant prostate cancer (CRPC) through mechanisms including marked increases in AR gene expression. We identify an enhancer in the AR second intron contributing to increased AR expression at low androgen levels in CRPC. Moreover, at increased androgen levels, the AR binds this site and represses AR gene expression through recruitment of lysi...

متن کامل

Histone demethylase LSD1 regulates neural stem cell proliferation.

Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation. Its role in neural stem cells has not been studied. We show here for the first time that LSD1 serves as a key regulator of neural stem cell proliferation. Inhibition of LSD1 activity or knockdown of LSD1 expression led to dramatically reduced neural stem cell proliferation. LSD1 is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2014